Si estás viendo este mensaje, significa que estamos teniendo problemas para cargar materiales externos para Khan Academy.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Un viaje por la criptografía

Test de números primos

Have you seen the lesson on Modern Cryptography? At the last checkpoint this was the most popular question asked by users:

In the lesson we saw how prime factorization played a fundamental role in the construction of mathematical locks. A mathematical lock (or one-way function) requires a procedure which is easy to perform and hard to reverse

For example, If I randomly pick two large prime numbers such as: P1 = 709 and P2 = 733

and multiply them to get: N = P1 * P2

N = 709 * 733 = 519697     (this is easy to compute)

I end up with two things: a large number (519697) and the prime factorization for that large number (709 * 733)

Now, imagine I hide the prime factorization and only provide you with the following:

519697 = ? * ?     (this is hard to compute)

If I ask you to find the prime factorization, where would you begin? Don't worry, everyone would struggle with this problem! To find the solution you must do a bunch of trial and error tests. Multiplication is fast (easy) to compute while prime factorization is slow (hard). This simple fact forms the basis for the RSA encryption scheme