If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Relaciones de equivalencia

Proposiciones equivalentes

Antes de continuar, es importante recordar que las siguientes proposiciones son equivalentes:
  • A, \equiv, B, space, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis
  • A, start text, space, m, o, d, space, end text, C, equals, B, start text, space, m, o, d, space, end text, C
  • C, space, vertical bar, space, left parenthesis, A, minus, B, right parenthesis (El símbolo | significa divide o es un factor de)
  • A, equals, B, plus, K, dot, C (donde K es algún entero)
Esto nos permite expresar la misma idea de diferentes formas.
Por ejemplo, las siguientes expresiones son equivalentes:
  • 13, \equiv, 23, space, left parenthesis, start text, m, o, d, space, end text, 5, right parenthesis
  • 13, start text, space, m, o, d, space, end text, 5, equals, 23, start text, space, m, o, d, space, end text, 5
  • 5, space, vertical bar, space, left parenthesis, 13, minus, 23, right parenthesis, left parenthesis, 5, space, vertical bar, space, minus, 10, lo cual es cierto ya que 5, times, left parenthesis, minus, 2, right parenthesis, equals, minus, 10, right parenthesis
  • 13, equals, 23, plus, K, dot, 5. Podemos satisfacer esta expresión con K, equals, minus, 2: 13, equals, 23, plus, left parenthesis, minus, 2, right parenthesis, times, 5

La congruencia módulo es una relación de equivalencia

tarta

Convéncete de que las rebanadas utilizadas en el ejemplo anterior tienen las siguientes propiedades:
  • Cada par de valores en una rebanada están relacionados entre sí.
  • Nunca encontraremos un valor en más de una rebanada (las rebanadas son mutuamente disjuntas).
  • Si combináramos todas las rebanadas formaríamos un pastel que contendría todos los valores.
Un pastel cuyas rebanadas tengan estas propiedades tiene una relación de equivalencia.
Una relación de equivalencia define cómo podemos cortar nuestro pastel (cómo hacer una partición de nuestro conjunto de valores) en rebanadas (clases de equivalencia).
En general, las relaciones de equivalencia deben tener estas propiedades:
  • El pastel: una colección de todos los valores que nos interesan.
  • Una rebanada de pastel: una clase de equivalencia.
  • Cómo cortamos el pastel en rebanadas: relación de equivalencia.
Específicamente, para nuestro ejemplo anterior:
  • El pastel: la colección de todos los enteros.
  • Una rebanada del pastel etiquetada con B: una clase de equivalencia en donde todos los valores son start text, m, o, d, space, end text, C, equals, B.
  • Cómo cortamos el pastel en rebanadas: al usar la relación de congruencia módulo C, \equiv, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis.
Es por esto que decimos que la congruencia módulo C es una relación de equivalencia. Hace una partición de los enteros en C clases de equivalencia diferentes.

¿Por qué nos importa que la congruencia módulo C sea una relación de equivalencia?

Saber que la congruencia módulo C es una relación de equivalencia nos permite conocer algunas propiedades que debe tener.
Las relaciones de equivalencia son relaciones que tienen las siguientes propiedades:
  • Son reflexivas: A está relacionada con A.
  • Son simétricas: si A está relacionada con B, entonces B está relacionada con A.
  • Son transitivas: si A está relacionada con B y B está relacionada con C, entonces A está relacionada con C.
Dado que la congruencia módulo es una relación de equivalencia para (mod C). Esto significa:
  • A, \equiv, A, space, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis
  • Si A, \equiv, B, space, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis, entonces B, \equiv, A, space, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis
  • Si A, \equiv, B, space, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis y B, \equiv, D, space, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis, entonces A, \equiv, D, space, left parenthesis, start text, m, o, d, space, end text, C, right parenthesis

Ejemplo

mod5
Vamos a aplicar estas propiedades a un ejemplo concreto usando start text, m, o, d, space, end text, 5, colon
  • 3, \equiv, 3, space, left parenthesis, start text, m, o, d, space, end text, 5, right parenthesis (propiedad reflexiva)
  • if 3, \equiv, 8, space, left parenthesis, start text, m, o, d, space, end text, 5, right parenthesis then 8, \equiv, 3, space, left parenthesis, start text, m, o, d, space, end text, 5, right parenthesis (propiedad simétrica)
  • if 3, \equiv, 8, space, left parenthesis, start text, m, o, d, space, end text, 5, right parenthesis and if 8, \equiv, 18, space, left parenthesis, start text, m, o, d, space, end text, 5, right parenthesis then 3, \equiv, 18, space, left parenthesis, start text, m, o, d, space, end text, 5, right parenthesis (propiedad transitiva)

¿Quieres unirte a la conversación?

  • Avatar piceratops seed style para el usuario Adrián
    ¿Pueden explicar esto mejor? Me perdí un poco

    En el primer ejemplo de este texto leemos:

    Por ejemplo, las siguientes expresiones son equivalentes:
    *
    *
    * 5 | (13 - 23), (5 | - 10, lo cual es cierto "porque ya que" 5 x - 2 = - 10)
    Si entiendo que la resta 13 - 23 = - 10 y que este se puede factorizar como (5 x -2) pero no entiendo como se interpreta " | ":
    gracias!
    (4 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario Sofi Leaños
    Tengo que demostrar la relación de equivalencia de (mod 3) <-> (a~b <->m | (a-m))
    Se me complica el hecho de la división. AYUDA
    (2 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario marlymermaid2001
    Como saco el resultado de la expresión (107+22)modo 10
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario JULIO MACHADO
    Es un contenido realemente pesado, pero una vez que se comprende bien, el resto se hace mas facil. Muy bien!
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario Abner Palma
    Tengo que demostrar la relación de equivalencia de (mod 3) <-> (a~b <->m | (a-m))
    Se me complica el hecho de la división. AYUDA
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.