If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:2:42

Transcripción del video

ahora que tienes una idea de cómo funciona te estamos listos para calcular nuestro punto de intersección y entre nuestros rayos cp y nuestro segmento lineal ave recuerda del vídeo anterior que la forma pendiendo intersección de la línea ave es que equivale a menos 13 x + 11 y la representación paramétrica del rayo cp es la función r dt es igual a 1 - t por c master por p los diferentes valores del parámetro te ubican diferentes puntos en el rayo el punto de intersección que buscamos es uno de estos puntos en el rayo así que debe haber algún valor de t llamémoslo t asterisco tal que y sea igual a rd t asterisco estas son realmente dos ecuaciones una para la coordenada x de iu y otra para la coordenada y estas dos ecuaciones son y su x es igual a 3 v x dt asterisco lo que equivale a 1 - de asterisco x se sube x + t asterisco por p sube x de la misma forma y sub es igual a rsvp asterisco lo que equivale a 1 - t asterisco porsche sub master asterisco por p sub en este caso particular de nuestra posición de cámara tiene las coordenadas 0 0 y p tiene las coordenadas 2 un medio por lo tanto tenemos y sube x es igual a t asterisco por 2 y su bien es igual a te asterisco por un medio y también está en el segmento lineal ave de manera que satisface la forma pendiente intersección para ave es decir y sub es igual a menos 3 por iu sube x + 11 entonces tenemos tres ecuaciones y tres incógnitas y sube x y sube y te asterisco podemos solucionar el sistema de ecuaciones sustituyendo las dos primeras ecuaciones en la tercera para obtener una ecuación solo ente asterisco un medio de té asterisco es igual a menos 3 por 2 porte asterisco más 11 resuelve esto párate asterisco y luego introducir ese valor de asterisco en las primeras dos ecuaciones para obtener y sube x e y sube y así es como se hace antes de continuar práctica este tipo de función paramétrica en el siguiente ejercicio