Si estás viendo este mensaje, significa que estamos teniendo problemas para cargar materiales externos en nuestro sitio.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Contenido principal

Preparación para semejanza

Practicar identificar las relaciones proporcionales y resolver ecuaciones con proporciones nos ayuda a estar preparados para aprender acerca de semejanza.
Repasemos algunos conceptos que serán útiles a medida que inicies la unidad de semejanza en el curso de geometría de bachillerato. Verás un resumen de cada concepto, junto con un artículo de muestra, enlaces para más práctica, y alguna información sobre por qué necesitarás el concepto para la unidad que tenemos enfrente.
Este artículo solo incluye conceptos de cursos anteriores. También hay conceptos dentro de este curso de geometría de escuela secundaria que son importantes para comprender la semejanza. Si todavía no has dominado la lección de Triángulos congruentes o la lección de Propiedades preservadas de las dilataciones, quizás pueda serte util repasarlas antes de avanzar en la unidad.

Identificar relaciones proporcionales

¿Qué es esto, y por qué lo necesitamos?

Una relación entre dos cantidades es proporcional si la relación entre esas cantidades es siempre equivalente. Examinaremos razones de longitudes laterales para ver si triángulos son semejantes o no.

Práctica

Problema 1
La altura del triángulo A es 2.5 cm y su base es 1.6 cm. La altura y base del triángulo B son proporcionales a las del triángulo A.
¿Cuáles de las siguientes pueden ser la altura y base del triángulo B?
Elige 3 respuestas:

Para más práctica, ve a Relaciones proporcionales.

¿Dónde usaremos esto?

He aquí algunos de los ejercicios en los que repasar relaciones proporcionales puede ser útil:

Resuelve ecuaciones con proporciones

¿Qué es esto, y por qué lo necesitamos?

Cuando dos razones son iguales, creamos una ecuación de la proporción. Si multiplicamos la ecuación por ambos denominadores, podemos resolver la ecuación resultante como una ecuación lineal (o cuadrática, pero no en esta unidad). Estableceremos ecuaciones con proporciones para determinar longitudes en figuras semejantes.

Práctica

Problema 2.1
Despeja m.
No redondees. Si es necesario, escribe tu respuesta como una fracción.
810=6m
m=
  • Tu respuesta debe ser
  • un entero, como 6
  • una fracción propia simplificada, como 3/5
  • una fracción impropia simplificada, como 7/4
  • un número mixto, como 1 3/4
  • un decimal exacto, como 0.75
  • un múltiplo de pi, como 12 pi o 2/3 pi

Para más práctica, ve a Resolver proporciones 2.

¿Dónde usaremos esto?

He aquí algunos de los ejercicios en los que repasar ecuaciones de proporciones puede ser útil.

¿Quieres unirte a la conversación?

¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.