If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Ejemplo resuelto: evaluar funciones definidas por partes

Evaluar funciones definidas por partes en valores de entrada dados, tanto a partir de una fórmula como a partir de una gráfica.

¿Quieres unirte a la conversación?

  • Avatar blobby green style para el usuario Meza Puma Alberth Max
    en la parte g(4.0001) cae en -3 abierto / aquí no es indefinido
    y g9 también cae en -3 abierto y es indefinido ¿porque? acá si
    (4 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar winston default style para el usuario Moises
    Estos temas a que grado le corresponden secundaria o preparatoria??
    (3 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario Alejandro Marcias
    Donde puedo encontrar un video en donde expliquen las reglas?
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario Luis david Bazán cuba
    Estan muy bien propuestos los ejercicios de funciones
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario david.garcia
    No entiendo nada, por que algunas veces se usa la bolita de arriba y otra no?
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
    • Avatar old spice man blue style para el usuario Koatl
      Supongo que te refieres a que ¿por qué en algunos casos se usan los valores establecidos que están arriba en el eje "y" positivo?

      Bueno, eso es debido a que algunos valores dados en el video solo se encuentran en ese intervalo de valores posibles. Ya que los otros intervalos establecidos (es decir los que están en los valores negativos) no están en el rango de ciertos valores dados en el video
      (1 voto)
¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.

Transcripción del video

considera la siguiente función por pedazos y nos dan una función efe dt que está definida en tres partes la primera está cuadrada menos 5 t cuando t es menor o igual que menos 10 vale temas 19 cuando t es mayor que menos 10 y menor que menos 2 y te kubica entre temas nueve cuando t es mayor o igual que menos dos la pregunta es cuál es el valor de f evaluada en menos 10 muy bien entonces esencialmente aquí nos están diciendo cuál valor de t es el que tenemos que utilizar verdad tenemos que tomarte igual a menos 10 así que eso corresponde justamente a este caso que tenemos aquí verdad este está incluyendo el caso en el que te vale menos 10 entonces tenemos que usar esta regla de correspondencia verdad eso nos dice que f de menos 10 tiene que ser igual a menos 10 al cuadrado simplemente sustituimos menos 10 cada vez que observamos un ante tenemos menos 10 al cuadra -5 porte que en este caso es menos 10 entonces menos 10 al cuadrado es 100 y menos 5 x menos 10 es justamente más 50 verdad menos por menos nos da más y 5 por 10 nos da 50 y finalmente 100 más 50 es 150 entonces 150 es el valor de f de menos 10 vamos con otro ejercicio dice considera la siguiente función por pedazos y ahora nos dan hdx definida en tres partes x kubica cuando x está entre menos infinito y 0 24 entre x menos uno cuando x está entre 0 y 8 y x menos 1 por x 3 cuando x está entre 8 e infinito cuál es el valor de h evaluada en -3 entonces es el mismo caso que teníamos anteriormente verdad tenemos que encontrar en cuál de estos intervalos se encuentra menos 3 y justamente se encuentra en esta verdad el número menos 3 es más chico que 0 verdad así que le corresponde esta regla tendríamos que evaluar menos 3 al cubo si nos hubieran preguntado por ejemplo h evaluada en 3 entonces hubiéramos usado esta regla que tenemos en medio y si nos hubieran dicho h evaluada en 30 hubiéramos utilizado esta última regla que tenemos así que vamos a resolver este problema fácilmente h evaluada en menos 3 es justamente menos 3 elevado al cubo y menos 3 elevado al cubo será menos 27 verdad 3 al cubo es 27 y menos x menos por menos es más así que esencialmente podemos ignorar las otras dos posibilidades vamos con un último ejercicio este es un poco distinto dice se tiene la gráfica de gx digamos que esta es la gráfica de gx relaciona cada expresión con su valor y nos dan una tabla en donde hay que evaluar la función g en ciertos valores y nos dan posibilidades puede valer 37 menos 3 o quizás indefinido vamos a ver qué pasa con g evaluado en menos 3.000 1 entonces si nos vamos a la gráfica menos 3.001 anda digamos como por aquí verdad está un poco más a la izquierda de 3 si nos fijamos en el valor que toma la función sería justamente el valor de 3 verdad esta función está definida por pedazos y así se ve la gráfica pero en menos 3.000 1 vale 3 así que vamos a rellenar este circuito qué pasa con g evaluado en 3.999 3.99 es casi 4 verdad casi 4 casi 4 no es precisamente 4 así que está ligeramente a la izquierda y entonces podemos observar ahora que el valor de la función en 3.999 es 7 verdad entonces este es el valor de la función en 3.999 que pasa cuando tenemos que evaluada en 4.000 uno bueno estamos ligeramente a la derecha del 4 verdad y en la función evaluada en 4 nos dice que vale 7 verdad y eso lo podemos ver con este círculo relleno sin embargo al movernos tantito a la derecha del 4 ya no tenemos el valor 7 sino ahora cae hacia abajo y tenemos el valor de menos 3 cuando estamos ligeramente a la derecha de 4 entonces el valor d en 4.000 uno sería menos tres verdad y finalmente cuánto vale que en nueve bueno pues nos vamos a nueve y vemos que bueno quizás estaríamos tentados a decir que también es menos 3 sin embargo en el 9 hay una bolita abierta eso significa que la función en 9 no toma este valor y de hecho no vemos ningún valor que pueda tomar la función verdad si tomar algún valor veríamos digamos como un circulito sin embargo no hay ninguno así que esta función está indefinida en 9