If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:2:26

El problema de dividir cero entre cero

Transcripción del video

en el último vídeo vimos porque cualquier número que querramos dividirlo entre 0 es matemáticamente dicho que está indefinido pero supongo que en tu cabeza te has estado planteando la siguiente pregunta qué pasa en el caso de cuando se divide 0 entre 0 este no es un argumento que podría estar definiendo nuestra pregunta entonces vamos a lo siguiente pensemos en ceros sobre 0 cuál sería el par de líneas de razonamiento por aquí entonces podríamos comenzar tomando números o valores muy muy cercanos a cero y dividirlos entre sí mismos como por ejemplo si tomamos 0.01 y lo dividimos sobre sí mismo nos da igual a uno luego un número más pequeño 0.01 también dividido sobre si es igual a uno un número más pequeño 20.0000 uno sobre sí mismo también va a ser igual a uno y luego entonces decimos lo siguiente no nos importa que dichos números fueran negativos aquí cambiamos los signos pues nos sigue arrojando el mismo resultado así que basado en esta lógica podríamos decir y esto suena como un excelente argumento para poder decir que es 0 sobre 0 está definido igual a 1 entonces ponemos por aquí que 0 sobre 0 es igual a 1 en sonaría bastante lógico pero ahora viene lo siguiente que de repente alguien viniera y te dijera bueno pues ahora qué pasaría si dividimos 0 entre números muy cercanos a 0 no un número sobre sí mismo pero sí sobre números muy pequeños o números muy cercanos a 0 y entonces que tomáramos por ejemplo 0 sobre 0.1 esto es igual a 0 0 sobre todavía uno más pequeño 0.01 también va a ser igual a cero y cero sobre cero punto 0 0001 y también va a ser igual a cero entonces también está este argumento o esta lógica nos acompaña a decir que aunque pongamos negativos nos sigue arrojando el mismo resultado y con esto pensamos que 0 sobre 0 también podemos decir que es igual a 0 y entonces tenemos por igual dos argumentos válidos y porque ambos son igualmente válidos se dice que es inconsistente dentro de las matemáticas por lo que una vez más matemáticamente se ha dejado que 0 sobre 0 está indefinido 0 sobre 0 se dice entonces que está indefinido