If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:2:29

Manipular fórmulas: área

Transcripción del video

La fórmula para el área de un triángulo es "A" igual a 1/2 de "b" por "h" donde "A" es igual a área, "b" es igual a longitud de la base y "h" es igual a longitud de la altura. Así que "A" es igual a 1/2 de "b" por "h". Resuelve esta fórmula para la altura. Déjame dibujar un triángulo por aquí, para que podamos visualizar estas dimensiones, aquí tenemos un triángulo, la longitud de la base "b" es esta distancia de aquí y la longitud de la altura o simplemente la altura "h" es ésta de aquí. Vamos a ponerlo con minúscula que es como comúnmente se escribe y nos piden resolver esta fórmula para la altura. La fórmula es área es igual a 1/2 de base por altura y nos piden resolver para "h". Lo que tenemos que hacer es despejar la "h". "h" se encuentra del lado derecho, vamos a eliminar lo demás. Lo que podemos hacer... podríamos hacer varios pasos a la vez, pero no, vamos a hacerlo paso a paso. Eliminemos primero este 1/2, está multiplicando la "h", la mejor manera de eliminar 1/2 es multiplicarlo por su recíproco, que en este caso sería 2 sobre 1 o simplemente 2. Así es que hagamos eso, multipliquemos por 2, multiplicamos por 2 el lado derecho y también multiplicamos por 2 el lado izquierdo, recuerda que lo que hagas de un lado, lo tienes que hacer del otro lado también. ¿Y qué nos queda? Bueno, hicimos esto de multiplicar por 2 para que 2 por 1/2 se haga 1, con lo cual del lado derecho nos queda tan solo "b" por "h" y del lado izquierdo nos queda 2 por "A", "2A". Y ya casi acabamos, aquí tenemos "b" que multiplica a "h" si queremos eliminar esta "b", vamos a dividir ambos lados de la ecuación entre "b", dividimos entre "b" el lado derecho y dividimos entre "b" el lado izquierdo, podemos considerar la "b" como el coeficiente de la "h", el cual estamos eliminando dividiendo entre "b". ¿Y que tenemos? Del lado derecho estas "b" se cancelan y nos queda tan solo "h" y del lado izquierdo nos queda "2A" sobre "b". La ecuación resulta ahora entonces, "h", aquí estoy intercambiando los lados de la ecuación, "h" que es igual a "2A" entre "b". Así es que ya hemos resuelto la fórmula para la altura y ya hemos concluido. Y esto puede ser útil si alguien te proporciona una serie de áreas y de bases y te pide que encuentres las alturas para esos datos, las alturas de esos triángulos.