If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Demostración de un caso especial de la regla de L'Hôpital

La regla de L'Hôpital nos ayuda a encontrar límites en la forma limit, start subscript, x, \to, c, end subscript, start fraction, u, left parenthesis, x, right parenthesis, divided by, v, left parenthesis, x, right parenthesis, end fraction donde la sustitución directa termina en las formas indeterminadas start fraction, 0, divided by, 0, end fraction o start fraction, infinity, divided by, infinity, end fraction.
La regla esencialmente dice que si el límite limit, start subscript, x, \to, c, end subscript, start fraction, u, prime, left parenthesis, x, right parenthesis, divided by, v, prime, left parenthesis, x, right parenthesis, end fraction existe, entonces los dos límites son iguales:
limit, start subscript, x, \to, c, end subscript, start fraction, u, left parenthesis, x, right parenthesis, divided by, v, left parenthesis, x, right parenthesis, end fraction, equals, limit, start subscript, x, \to, c, end subscript, start fraction, u, prime, left parenthesis, x, right parenthesis, divided by, v, prime, left parenthesis, x, right parenthesis, end fraction
Para seguir el curso de cálculo (AP Calculus) no necesitas saber la demostración de este hecho, pero creemos que siempre que la demostración sea accesible, hay algo que aprender de ella. En general, suele ser bueno buscar algún tipo de prueba o justificación de los teoremas que aprendes.
Contenedor video de Khan Academy
Proof of special case of l'Hôpital's ruleVer la transcripción del video

¿Quieres unirte a la conversación?

Sin publicaciones aún.
¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.