If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:4:47

Transcripción del video

digamos que nos dan la ecuación cuadrada menos equis cuadrada es igual a 4 y queremos encontrar la segunda derivada de con respecto a x queremos encontrar una expresión en términos de x y de jess para esta causa en el vídeo y traten de resolver esto por su cuenta vamos a resolverlo juntos quizá alguno de ustedes se le ocurre despejar la aie y usar algunas técnicas tradicionales pero aquí tenemos la guía al cuadrado lo que implica tener más menos la raíz cuadrada de algo por lo que quizás se les ocurra que podemos hacer algo de derivación implícita que es una aplicación de la regla de la cadena vamos a hacer lo primero encontremos la primera derivada de con respecto a x para hacer esto calculamos la derivada con respecto a x en ambos lados de la ecuación para encontrar la derivada de cuadrada con respecto a x usamos la regla de la cadena primero calculamos la derivada de cuadrada con respecto a y que es igual a 12 que después multiplicamos con la derivada de y con respecto a x a esto le vamos a restar la derivada de x cuadrada con respecto a x que es 2x y sólo nos falta calcular la derivada de una constante con respecto a x que es igual a 0 ahora vamos a despejar la primera derivada de ye con respecto a x sumamos 2 en ambos lados y nos quedan 2 por la derivada de con respecto a x es igual a 2 x ahora dividimos ambos lados entre 12 lo que nos da que la derivada de con respecto a x es igual a x entre y el siguiente paso es calcular la derivada de todo esto con respecto a x y así esperamos encontrar la segunda derivada de jake con respecto a x para hacerlo vamos a reescribir esto y bueno a mí siempre se me olvida la regla del cociente pero a ustedes les puede ser útil recordarla pero podemos reescribir esto como un producto lo cual nos va a ayudar a encontrar lo que queremos la derivada de y con respecto a x es igual a x porque a la potencia menos 1 ahora aplicamos el operador derivada a ambos lados de la ecuación para encontrar la segunda derivada con respecto a x en el lado izquierdo tenemos lo que queda encontrar la segunda derivada de con respecto a x y del lado derecho que vamos a tener aplicamos la regla del producto primero tenemos la derivada de x con respecto a x que es igual a 1 x a la potencia menos 1 a esto le sumamos x x la derivada del ala menos 1 cuál es la derivada de a la menos uno primero encontramos la derivada de iu a la menos uno con respecto a y que es aplicar la regla de la cadena nos queda menos 1 porque a la menos 2 y multiplicamos esto por la derivada de ye con respecto a x recuerden que ya sabemos a que es igual la derivada de ye con respecto a x es esto de aquí x entre y lo sustituimos acá finalmente tenemos que simplificar esta expresión vamos a hacerlo por partes esto es igual a 1 entre y en esta otra parte vemos que el signo negativo va primero tenemos x por esta x en el numerador que será dividida entre una cuadrada multiplicada por otra y esto nos queda menos x cuadrada entre y al cubo o también podríamos verlo como x cuadrada por al menos 3 con esto hemos encontrado lo que buscábamos la segunda derivada de g con respecto a x en términos de x 10 nos vemos en el siguiente vídeo
AP® es una marca registrada de College Board, que no ha revisado este recurso.