If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

La media como punto de equilibrio

Explora cómo podemos pensar en la media como el punto de equilibrio en una distribución de datos.
Sabes como encontrar la media al sumar y dividir. En este artículo, pensaremos en la media como un punto de equilibrio. ¡Comencemos!

Parte 1: encuentra la media

Encuentra la media de left brace, 5, comma, 7, right brace.
  • Tu respuesta debe ser
  • un entero, como 6
  • una fracción propia simplificada, como 3, slash, 5
  • una fracción impropia simplificada, como 7, slash, 4
  • un número mixto, como 1, space, 3, slash, 4
  • un decimal exacto, como 0, point, 75
  • un múltiplo de pi, como 12, space, start text, p, i, end text o 2, slash, 3, space, start text, p, i, end text

Encuentra la media de left brace, 5, comma, 6, comma, 7, right brace.
  • Tu respuesta debe ser
  • un entero, como 6
  • una fracción propia simplificada, como 3, slash, 5
  • una fracción impropia simplificada, como 7, slash, 4
  • un número mixto, como 1, space, 3, slash, 4
  • un decimal exacto, como 0, point, 75
  • un múltiplo de pi, como 12, space, start text, p, i, end text o 2, slash, 3, space, start text, p, i, end text

¡Qué interesante! En los primeros dos problemas, los datos estaban "equilibrados" alrededor del número seis. Intenta el problema siguiente sin encontrar el total o dividir. En vez de eso, piensa en cómo los números se encuentran equilibrados alrededor de la media.
Encuentra la media de left brace, 1, comma, 3, comma, 5, right brace.
  • Tu respuesta debe ser
  • un entero, como 6
  • una fracción propia simplificada, como 3, slash, 5
  • una fracción impropia simplificada, como 7, slash, 4
  • un número mixto, como 1, space, 3, slash, 4
  • un decimal exacto, como 0, point, 75
  • un múltiplo de pi, como 12, space, start text, p, i, end text o 2, slash, 3, space, start text, p, i, end text

Observa cómo el 1 y el 5 están "equilibrados" a cada lado del 3:
Encuentra la media de left brace, 4, comma, 7, comma, 10, right brace.
  • Tu respuesta debe ser
  • un entero, como 6
  • una fracción propia simplificada, como 3, slash, 5
  • una fracción impropia simplificada, como 7, slash, 4
  • un número mixto, como 1, space, 3, slash, 4
  • un decimal exacto, como 0, point, 75
  • un múltiplo de pi, como 12, space, start text, p, i, end text o 2, slash, 3, space, start text, p, i, end text

¿Puedes ver cómo los datos del conjunto siempre están equilibrados alrededor de la media? ¡Intentemos un problema más!
Encuentra la media de left brace, 2, comma, 3, comma, 5, comma, 6, right brace.
  • Tu respuesta debe ser
  • un entero, como 6
  • una fracción propia simplificada, como 3, slash, 5
  • una fracción impropia simplificada, como 7, slash, 4
  • un número mixto, como 1, space, 3, slash, 4
  • un decimal exacto, como 0, point, 75
  • un múltiplo de pi, como 12, space, start text, p, i, end text o 2, slash, 3, space, start text, p, i, end text

Parte 2: una nueva manera de pensar en la media

Tal vez hayas observado en la parte 1 que para algunos conjuntos simples de datos es posible encontrar la media sin encontrar el total o dividir.
Idea clave: Podemos pensar en la media como el punto de equilibrio, que es una manera elegante de decir que la distancia total de la media a los datos debajo de ella es igual a la distancia total de esta a los datos arriba de ella.

Ejemplo

En la parte 1, encontraste que la media de left brace, 2, comma, 3, comma, 5, comma, 6, right brace es start color #e07d10, 4, end color #e07d10. Podemos ver que la distancia total de la media a los datos debajo de ella es igual a la distancia total de la media a los datos arriba de ella, ya que start color #e84d39, 1, end color #e84d39, plus, start color #e84d39, 2, end color #e84d39, equals, start color #1fab54, 1, end color #1fab54, plus, start color #1fab54, 2, end color #1fab54:

Preguntas para reflexionar

En este ejemplo, ¿cuál es la distancia total start color #e84d39, start text, d, e, b, a, j, o, end text, end color #e84d39 de la media?
Escoge 1 respuesta:

En este ejemplo, ¿cuál es la distancia total start color #1fab54, start text, a, r, r, i, b, a, end text, end color #1fab54 de la media?
Escoge 1 respuesta:

Parte 3: ¿la media siempre es el punto de equilibrio?

¡Sí! Siempre es verdad que la distancia total debajo de la media es igual a la distancia total arriba de ella. Solo pasa que es más sencillo verlo en algunos conjuntos de datos que en otros.
Por ejemplo, consideremos el conjunto de datos left brace, 2, comma, 3, comma, 6, comma, 9, right brace.
Así es como calculamos la media:
start fraction, 2, plus, 3, plus, 6, plus, 9, divided by, 4, end fraction, equals, start color #e07d10, 5, end color #e07d10
La distancia total debajo de la media es igual a la distancia total arriba de ella, pues start color #e84d39, 2, end color #e84d39, plus, start color #e84d39, 3, end color #e84d39, equals, start color #1fab54, 1, end color #1fab54, plus, start color #1fab54, 4, end color #1fab54:

Parte 4: practica

Problema 1

Para el conjunto de datos que se muestra a continuación, ¿cuál de estas líneas representa la media?
Escoge 1 respuesta:

Problema 2

Para el conjunto de datos que se muestra a continuación, ¿cuál de estas líneas representa la media?
Escoge 1 respuesta:

Problema de desafío

La media de cuatro puntos es 5. Tres de los cuatro y la media se muestran en el diagrama de abajo.
Escoge el cuarto punto.
Escoge 1 respuesta:

¿Quieres unirte a la conversación?

¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.