Contenido principal
Tiempo actual: 0:00Duración total:4:32

Problema verbal sobre el teorema de Pitágoras: barco de pesca

CCSS Math: 8.G.B.7

Transcripción del video

el mástil principal de un bote de pesca está sostenido por una cuerda tensa amarrada de la parte superior del mástil a la cubierta y el máster tiene 20 pies de altura y la cuerda está amarrada la cubierta a 15 pies de la base del mástil cuál es la longitud de la cuerda ok vamos a hacer un dibujo para asegurarnos de entender todo lo que está sucediendo aquí estoy aquí va a ser la cubierta del barco voy a acabar de dibujar el barco va a ser más o menos algo así por aquí si quieres ponemos algunas olas y bueno les voy a poner más arriba aquí tenemos unas olas sale ok y lo importante es que nos dan el mástil el mástil es uno de los palos que sostienen las velas del barco entonces lo voy a dibujar por acá ahí tenemos el más ti algo de este estilo del cual nos dan la longitud nos dicen que queme de 20 pies de altura aquí voy a poner 20 pies 20 pies sale y nos dicen que hay una cuerda que está amarrada de la parte superior a la cubierta a 15 pies de la base del mástil entonces si la cuerda es no sé ver de la cuerda quedaría amarrada por un lado acá y por otro lado más o menos por acá de tal forma que esto que estoy acá me da 15 15 pies deja de dibujar la cuerda con otro color la voy a poner en color azul muy bien entonces estoy acá sería la cuerda estoy aquí es el dibujo y justo lo que nos piden es determinar la longitud de la cuerda vamos a ver qué sucede en este dibujo jefes y dibujo y algunas cosas especiales pasando aquí tenemos un triángulo y no es cualquier triángulo como esto en la cubierta y este es un mástil del barco es horizontal esto es vertical y por lo tanto este ángulo de acá es de 90 grados y es un ángulo recto y entonces tenemos un triángulo rectángulo y en los triángulos rectángulos podemos conocer la longitud del tercer lado conociendo la longitud de los otros dos a partir del teorema de pitágoras lo voy a poner por acá teorema teorema de de pitágoras y chau go gracias muy bien y tag horas lo que nos dice el teorema de pitágoras es algo muy sencillo nos dice que si tomamos la longitud del lado más grande que se llama la hipotenusa del triángulo voy a señalar estoy acá es la hipotenusa hipotenusa y esa longitud la elevamos al cuadrado entonces es lo mismo que sumar los cuadrados de los dos lados más cortos que se llaman catetos entonces vamos a ver qué nos dice el teorema de pitágoras en este caso básicamente nos dice que si elevamos 20 al cuadrado no voy a poner por acá 20 al cuadrado y a eso le sumamos 15 al cuadrado le sumamos 15 al cuadrado 15 al cuadrado entonces eso es igual a la longitud de la hipotenusa pero eso justo es la longitud de la cuerda dejar de ponerle sé porque es una cuerda me voy a ponerse entonces es esto de esta longitud que va hacia acá y acá vale entonces tenemos que 20 al cuadrado más 15 al cuadrado es igual hace elevado al cuadrado y a partir de aquí podemos desarrollar 20 al cuadrado es igual a 400 le voy a poner aquí 415 al cuadrado es 225 200b voy a ponerlo más para acá 225 y eso es igual hace al cuadrado hace al cuadrado 400 más 225 es igual a 625 625 y entonces 625 es igual es igual hace elevado al cuadrado así que para obtener se tenía más que sacar raíz de ambos lados aquí tenemos que sacar raíz acá también tenemos que sacar raíz y obtenemos que se es igual a la raíz de 625 a la raíz positiva porque necesitamos una longitud positiva vale a las longitudes son positivas y bueno para atacar la raíz de 625 podemos ver que 20 al cuadrado es más chiquito es 430 al cuadrado 900 se pasa así que debería ser como la mitad como 25 y sí sí verificar las cuentas 25 al cuadrado es 625 entonces se es igual a 25 de esta forma la longitud de la cuerda es 25 es de 25 pieza