If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:3:25

Ejemplo resuelto: intersecciones a partir de una ecuación

CCSS.Math:
8.EE.C.7
,
8.EE.C.7b
,
8.F.A.3

Transcripción del video

Nos piden encontrar las intersecciones en "x" y "y" de esta ecuación, "2y" más 1/3 de "x" igual a 12 y usarlas para graficar esta recta. Recordemos que la intersección en "x", es el punto en la gráfica que se encuentra sobre el eje "x", ni arriba, ni abajo de él, por lo que nuestro valor es cuando "y" es igual a 0 y usando exactamente el mismo criterio para la... intersección en "y", la vamos a tener cuando la línea toca exactamente el eje "y", es decir, cuando "x" es igual a 0. Usemos esto en la ecuación que nos dan para encontrar las intersecciones. Así que para encontrar la intersección en "x" tenemos que poner "y" en 0 de esta ecuación, así que aquí será 2 por "y" que es 0 más 1/3 de "x" igual a 12. 2 por 0 es 0, así que nos queda 1/3 de "x"igual a 12. Aquí, pues podemos multiplicar todo por el recíproco de 1/3, de manera que el recíproco de 1/3 es 3 entre 1, puedo multiplicar esto por 3 entre 1 y de este otro lado también hacemos lo mismo, para que se conserve la igualdad y con esto, estos se van y me queda que "x" es igual a 12 por 3 = 36, entre 1 pues queda igual, 36. Esta es mi intersección en "x", va a ser el punto 36, 0. Ahora, para la intersección en "y", bueno... Aquí nos dicen que es cuando "x" es igual a 0, así que en esta ecuación sustituimos "x" con 0 y la resolvemos. "2y" más 1/3 de "x" que es 0 igual a 12, bien, esto es un 0, nos queda "2y" igual a 12, dividimos todo entre 2, esto entre 2 y esto entre 2. Nos va a quedar "y" igual a 12 entre 2 = 6. Muy bien, nuestra coordenada de la intersección "y" va a ser 0, recordamos "x" es 0, 6. Vamos a dibujar estos puntos, voy a intentar hacer una gráfica aquí, lo más derechita que se pueda, lo bueno es que esto tiene herramientas bastante útiles. Entonces va a ser este mi eje de las "y", aquí voy a dibujar mi eje de las "x", la voy a hacer más larga porque el valor en "x" es mayor... ahí está... le ponemos sus etiquetas... "y", "x"... y nos dicen la intersección en "x" es 36,0 vamos a hacer grupos de 6 ó saltos de 6, 6, 12, 18, 24, 30 y 36. Entonces aquí los etiqueto, 6, 12, 18, 24, 30 y 36. Y también hago el... para "y" las divisiones, bueno, quedamos que el 6 es más o menos esta por acá y el 12, estaría más o menos por acá. Bueno, entonces, nuestra intersección en "x"... que lo dibujamos en color como verdecito... 36, 0... 36 es éste. Justo tocando el eje "x" y nuestra intersección en "y" es 0, 6... 0, 6 justamente acá, así que mi línea de esta ecuación va a pasar más o menos por acá, a ver, voy a hacer que se toquen estos dos puntos por aquí, así... y voy a tratar de continuarla de acá a acá, más o menos. Ahí está, esta es la línea que me describe esta ecuación de acá. Y solo nos falta poner las coordenadas de los puntos de estas intersecciones. Aquí es 36, 0... 36, 0, y el de "y", justo cuando la línea toca al eje "y", es el punto 0, 6. Y con esto hemos resuelto este problema.