Contenido principal
6.º grado
Curso: 6.º grado > Unidad 5
Lección 8: Combinar términos semejantesCombinar términos semejantes. Ejemplo
Vamos a simplificar juntos esta expresión usando nuestro nuevo conocimiento de cómo combinar términos semejantes, ¿de acuerdo? ¡Hagámoslo! Creado por Sal Khan.
¿Quieres unirte a la conversación?
- esta mamada no me sirve para nada:((5 votos)
- Por la variable son semejantes, mira este ejemplo:
si x=5 e y =2, (la variable puede representar cualquier numero)
x=5, 5=5, por lo que x=x
y=2, 2=2, y=y
Por ejemplo:
10x + 2y + 5y +5x=
(10x+5x)+(2y+5y)= 15x + 7y= (15*5) + (7*2)
se puede decir que y=y porque 2=2, y=2, de x=x porque 5=5 x=5 o a cualquier valor que se le haya dado a esa letra/variable (la variable puede representar cualquier numero de nuevo, solo decidí usar 2 o 5 para este ejemplo)
Más generalmente se puede afirmar:
n es igual a un numero cualquiera
x = n CREO xdxd :v(4 votos) - gracias, con esto aprendo mas(3 votos)
- Disculpen, ¿Se puede ocupar cualquier letra?(3 votos)
- Siporq el cualquier aclarasion dises cualquier letra(1 voto)
- ¿ porque se le pone una rayita al resultado?
por ejemplo: 6x-8y-4y= 6x -12y(2 votos) - como se suman los coeficientes(2 votos)
- Como cualquier suma de números enteros. Pero, tenga en cuenta que tengan las mismas variables con mismos exponentes(3 votos)
- pero lo que no entiendo es como se hace las otras que no son asi(1 voto)
- esta bastante fácil, y con este vídeo fue mucho mas sencillo, gracias(1 voto)
- Entonces, ¿puedo sumar 3x + 3y?(1 voto)
- no puedes sumar porque cuando son iguales si se pueden sumar pero cuando no son diferentes no se pueden sumar(1 voto)
- Mmm ys entendi pero tiene ke decir m@s cos@s(1 voto)
Transcripción del video
Hola de nuevo, tenemos aquí una
expresión bastante peluda y tu meta es intentar simplificar esto lo más posible, te daré un poco de tiempo para que lo intentes. Entonces, bueno, simplemente pensemos
en esto paso a paso, tal vez pueda ayudar si ordenamos
los términos en esa expresión. Así que bueno, que tal si primero pongo lo
términos que tienen "x". Tengo "5x" es este termino y luego menos "2x", ajá, y ahora a los que tienen "y", más "7y" y
más "3y", luego tengo... tengo "8z"... más "8z" y tengo "-z", finalmente tengo este...
este más 5. Entonces ahora solo pensemos un poco, si yo
tengo "5x, tengo 5 letras "x" y le quito 2"x", ¿cuántas "x" me van a quedar? ¿Cuántas me quedan?
Me quedan "3x". Ahora, no hay un truco aquí, no estamos aplicando,
como magia algebraica, no, simplemente tiene 5 cosas iguales, si le quitas 2 de esas cosas, te quedarán 3 cosas iguales, entonces en este caso esas cosas son "x" y se simplificará esto a "3x". Ahora, en muchas clases de álgebra, escucharás decir... a muchos decir... Oh, es que el coeficiente en "5x" es 5 y el
coeficiente en menos "2x" es este -2 y lo que hicimos fue sumar los coeficientes...
escribiré esa palabra aquí... estos son coeficientes...
son los números que están multiplicando a la variable, entonces son el 5 y el -2 en este caso. Tú puedes pensar, bueno, yo sumo los coeficientes
y eso es correcto, no hay nada malo en eso, pero si quieres enfatizar en la idea, es
simplemente decir, yo tengo 5 de algo y le quito 2 de ese algo, me quedarán 3 de ese
algo, ¿cierto? Simplemente tengo 5, le quito 2 y me quedan 3. Pero debes tener mucho cuidado porque debes
asegurarte de estar sumando, restando las mismas cosas, términos semejantes. Aquí estamos trabajando con las "x" primero,
entonces podemos tener "5x" y quitarle "2x", no podemos pensar en las "x" con las "y",
no podemos juntarlas porque eso francamente no tendría mucho sentido, pero ahora vamos... Ahora vamos con las "y", aquí yo tengo 7
de algo más 3 de ese algo, entonces tendré 10 de ese algo. Por lo tanto, esta parte de aquí se simplificará
a "10y" y una vez más podrías decir que el coeficiente en "7y" es 7, el coeficiente
en "3y" es 3, entonces los sumas, 7 más 3 es 10, obtienes "10y", pero es lo mismo, si tú tienes 7 de algo y le agregas 3 de ese algo,
obtienes 10 de ese algo. Ahora vamos con las "z"...
vamos con las "z"... Tengo 8 de algo y le quito 1 de ese algo,
entonces tendré 7 de ese algo, entonces es "7z" y tal vez te preguntes, bueno y qué,
¿cuál es el coeficiente en este "-z"? Porque ahí no ves un número pero implícitamente
puedes poner un 1 ahí, es lo mismo. Entonces restar una "z" es lo mismo que restar
"1z" y puedes ver que en efecto, tú has restado los coeficientes 8 y -1,
pero en sentido común lo que haces es... tú tienes 8 de algo y le quitas 1 de ese
algo, tienes entonces 7 de ese algo. Y ahora finalmente tenemos el más 5 y ¡terminamos! Esto se simplifica a "3x" más "10y"
más "7z" más 5, ahí esta.