If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:4:16

Transcripción del video

Ya hemos visto que si tomamos un entero -en  este ejemplo un entero es este círculo verde-   y lo dividimos en 5 secciones iguales -1, 2,  3, 4, 5, aquí lo hemos dividido en 5 secciones   iguales- y si tuviéramos que elegir una de esas  5 secciones iguales -digamos que elegimos esta   sección justo aquí-, habríamos elegido 1/5 del  entero, una de las cinco secciones iguales,   podríamos hacer exactamente lo mismo en una recta  numérica. Todo lo que hemos estado haciendo hasta   ahora tiene que ver con figuras, pero podríamos  expresar exactamente la misma idea en una recta   numérica. Así que déjenme dibujar una recta  numérica bastante grande para darnos una idea   de las cosas, llegará hasta allí; y digamos que  aquí está el 0, el 1 y el 2, y por supuesto que   podríamos seguir si tuviéramos más espacio para  3, 4 y así sucesivamente. Y lo que quiero hacer   es que, en lugar de tomar un círculo y dividirlo  en 5 secciones iguales, voy a tomar la sección de   nuestra recta numérica entre 0 y 1 y dividirla en  5 secciones iguales. Déjenme ver si puedo hacer   esto: 1, 2, 3, 4, y 5, se ve bastante bien; lo  estoy dibujando a mano lo más exacto que puedo.   Supongamos que son 5 secciones iguales, así que  ¿cuál creen que sería una buena etiqueta para   este número justo aquí? Bueno, es exactamente la  misma idea entre 0 y 1: he recorrido una de las 5   secciones iguales hacia 1. Déjenme hacerlo un poco  más ordenado. Podríamos hacer que las secciones   iguales se vean un poco mejor: 1, 2, 3, 4 y 5, y  estamos pensando en este. ¿Cómo deberíamos llamar   a este número? Está claramente entre 0 y 1, está  evidentemente más cerca de 0 y hemos recorrido una   de las 5 secciones iguales hacia 1. Bueno, tiene  mucho sentido: teníamos 5 secciones iguales aquí y   hemos recorrido una de ellas hacia 1, de modo que  a este número que tenemos aquí deberíamos llamarle   1/5. Cuando hablamos de una fracción, 1/5 no se  trata sólo de qué parte de un pastel o de una   pizza hemos comido o algo así, en realidad es un  número, este es un número, y podemos trazarlo en   la recta numérica. Ahora podríamos decir que esto  está bien para 1/5, ¿pero qué pasa con estas otras   marcas?, ¿cómo le llamaríamos a estos números?  Bueno, es exactamente la misma idea: si aquí en   lugar de sombrear una de las 5 secciones iguales  nombramos 2 de las 5 secciones iguales, entonces   ya no diríamos que esto es 1/5, diríamos que es  2/5, de modo que si recorremos 2 de las secciones   iguales hacia 1, a este número deberíamos llamarle  2/5. Y podemos continuar: este debería ser 3/5,   este de aquí -hemos recorrido una, dos tres,  cuatro de las cinco secciones hacia uno-, así   que podríamos llamarle 4/5, y podríamos continuar.  Si hemos recorrido 5 de las 5 secciones iguales   hacia uno, podríamos llamar a este número de aquí  5/5, podríamos decir que en 5 /5 llegamos a 1,   y eso es correcto: si tuviéramos que sombrear  5 cosas aquí, ya hemos visto, si selecciono   5 cosas aquí es 5/5 o 5 quintos, y es igual a 1  entero, y aquí recorremos 5/5 del camino hacia 1,   llegamos al entero: 5 /5 es exactamente  lo mismo que 1, es igual a un entero.