If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:2:42
CCSS.Math:
HSG.GPE.B.5

Transcripción del video

Nos preguntan, ¿cuáles de las siguientes rectas son paralelas? Y bueno, antes de ver las tres rectas que tengo aquí, quiero recordar qué significa que dos rectas sean paralelas. Dos rectas son paralelas si tienen... a ver pongámoslo aquí... paralelas... si tienen la misma pendiente... misma... misma pendiente... pero no solo eso... pendiente... lo que necesitamos, es que también corten al eje de las "y" en puntos distintos, o dicho de otra manera, si las ponemos en su forma "y" igual a "mx" más "b", que la "b" sea distinta. Lo voy a poner así... la "b" sea distinta... distinta... Ok, ahora que recordamos que tienen que ser rectas con la misma pendiente, pero que pasen por un punto distinto, dicho de otra manera, que tengan una "b" distinta, entonces vamos a trabajar con estas tres. Y la primera es la recta A. La recta A que, ¿qué me dice? Lo voy a poner justo aquí. La recta A dice, "2y" es igual a "12x" más 10, ok. Y si nosotros queremos ver su pendiente y su ordenada al origen, ¿qué te parece si despejamos a "y"? Y bueno, de aquí despejar a "y" ya es muy sencillo porque lo único que tenemos que hacer es dividir entre 2. Esta parte entre 2, esta parte también entre 2 y me va a quedar entonces... déjame ponerlo así... estos 2 se van y me queda que "y" es igual a 6 veces "x" más 5... más 5... 10 entre 2 es 5, ok. De aquí estoy diciendo... y lo voy a poner con este color... que su pendiente... pendiente... es 6, ok, es igual a 6 que es justo el número que está al lado de la "x" y su ordenada al origen "b", la intersección con el eje de las "y", va a ser en el valor de 5, de lujo. Ahora fijémonos en la recta B. Vamos a hablar de la recta B y para eso voy a utilizar este color, ok... Recta B, ¿qué me dice? La recta B, lo que me dice es que "y" es igual a 6, de aquí ya tengo despejada "y" y me dice que "y" es igual a 6, pero ten cuidado, eso no quiere decir que mi recta tiene una pendiente de 6. Esto es exactamente lo mismo que escribir que "y" es igual a 0 por "x" más 6. Si te das cuenta, aquí no tengo "x", esta es una recta constante y por lo tanto lo podemos escribir de esta siguiente manera, "y" es igual a 0 por "x", 0 por "x" es 0, más 6. O dicho de otra manera, ya podemos concluir... y déjame poner con este color... que su pendiente.. su pendiente... es el número que está al lado de la "x" que en este caso es 0... 0... tiene una pendiente de 0, precisamente porque es una recta constante y su ordenada al origen, es decir "b" es igual a 6. Esta recta, cruza al eje de las "y" en el valor de 6, de lujo. Entonces ya sabemos, que la recta A y la recta B en definitiva, no son paralelas , porque este tiene una pendiente de 6 y este tiene una pendiente de 0 y deben de tener la misma pendiente, así que trabajemos ahora con la recta C. Vamos a trabajar ahora con la recta C. Y la recta C, ¿qué me dice? Bueno, que "y" menos 2... "y"menos 2 es lo mismo que 6 por "x" más 2, ok, y bueno esta recta está en su forma, punto pendiente. Lo que quiere decir y de hecho de una forma muy rápida podemos concluir... mmm... déjenme ponerlo con este color... que su pendiente es justo el número que está multiplicando este paréntesis, su pendiente en este caso es 6 y bueno, no sabemos su ordenada al origen, pero lo que sí podemos saber, es que esta recta para por el punto, -2, 2. Recuerda que a éste se le cambia el signo y a éste se le cambia el signo. Las rectas que se ven de la forma punto pendiente y vamos a recordarlo, si su pendiente... pendiente... es "m", ok, y pasa por el punto a, b, entonces su ecuación sería "y" menos "b" es igual a "m" por "x" menos "a", de lujo. Y bueno, de esta manera puedo encontrar su pendiente muy fácil, es este número de aquí y puedo encontrar el punto por el que pasa, el punto a, b, le cambiamos el signo a éste y le cambiamos el signo a éste. Ahora, si te das cuenta, tiene la misma pendiente que la recta A, puedo decir que es casi seguro que sean paralelas o es la misma recta. Y para eso necesitamos saber cuanto vale su ordenada al origen. Y bueno, para saber cuanto vale su ordenada al origen, que te parece si despejamos de aquí a "y". "y"menos 2 es igual a "6x" más 12, ok, multipliqué éste por éste y éste por éste, "y" es igual a "6x" más 12, y éste pasa sumando, más dos, es decir, estoy sumando 2 de ambos lados de esta ecuación, "y" es igual a "6x" más 14. Y aquí está de lujo, porque ya puedo saber cuanto vale "b". "b" vale 14 y es justo lo que necesitaba. Tener la misma pendiente, ajá, y además que tuviéramos una "b" distinta, tengo una "b" de 14, cortamos al eje de las "y" en esta recta, en el valor de 14, pero tengo una pendiente de 6, mientras que en esta recta tengo una pendiente de 6 y una "b" de 5. Por lo tanto, puedo concluir... y lo voy a poner con este color... puedo concluir, que la recta... recta A es paralela... es paralela a la recta C... a la recta C. De lujo, hemos acabado este problema.