If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal
Tiempo actual: 0:00Duración total:5:07

Transcripción del video

aquí tenemos a bs de un rumbo y lo que queremos probar es que el área del rombo el área de a b c d es igual a hace por b de entre 2 o sea básicamente queremos ver que para determinar el área de un rombo podemos simplemente tomar el cemí producto de las diagonales vale bueno vamos a acordarnos de todo lo que sabemos acerca de los robos los rumbos para empezar son figuras de cuatro lados en los cuales los cuatro lados son iguales entonces aquí tenemos que ab es igual a abc que es igual a cd que es igual la dea pero los rombos además de rombos son paralelo gramos es decir los padres o puestos de helados son paralelos y de los paralelogramo sabemos varias cosas sabemos que las diagonales de vicedecana entre sí entonces vamos a utilizar eso y déjame llamarle a éste el punto e vale entonces lo que sabemos es que a é é es igual a s s y además sabemos que bebés&mamás disecan entre sí y no sólo eso además demostramos en el video pasado que las diagonales también son perpendiculares cuando tenemos un rom entonces aquí es perpendicular aquí es perpendicular todos esos ángulos que estoy marcando son de 90 grados vale muy bien entonces ahora sí vamos a pensar un poquito en el plan para intentar mostrar que el área es el semi producto de las diagonales la idea va a ser dividir este robo en dos triángulos congruentes el abc y el adc si logramos ver que son congruentes y encontramos el área de uno va a estar a multiplicar esa área por dos para encontrar el área de todo el rumbo entonces vamos a empezar con eso vamos a observar que el triángulo abc abc es congruente al triángulo adc ads y estoy aquí es por criterio por criterio de congruencia lado lado lado porque por qué tenemos qué ave es igual a la de que bese es igual la sede y además comparten este lado el lado hace vale muy bien entonces eso está padre porque ahora el área del cuadrilátero a b c d el área de abc de la podemos partir en dos áreas la del triángulo a b se más el área del triángulo adc a de c pero utilizando esta información de aquí arriba podemos juntar estas dos en una misma y poner que esto es igual a dos veces el área del triángulo abc vale porque abc y adc son triángulos congruentes y entonces ya nada más tenemos que determinar el área del triángulo apc déjame tomar el color amarillo es decir queremos determinar esta área de aka y bueno para determinar el área de un triángulo hay que hacer base por altura entre dos entonces lo voy a poner por aquí el área del triángulo abc es igual a base por altura entre dos y la base quien sería pues nos conviene pensar a hacer como base porque aquí hay una perpendicular que va a funcionar como altura entonces va a ser igual a hace es la base a eso hay que multiplicarlo por de e or be y esto lo tenemos que dividir entre 210 entre dos y ahora lo que voy a hacer que un poquito fue a esta ave no voy a arreglar lo que voy a hacer es ver a ve como la mitad debe de sí porque ve es igual a la de entonces ve es la mitad debe de entonces de esta forma podemos escribir esta igualdad como hace hace x un medio debe de por un medio debe de dvd y esto lo dividimos entre dos entre 2 y entonces ahora sí regresamos al área de el cuadrilátero a b c d es decir juntamos esta información con la que tenemos aquí a bajito entonces el área del cuadrilátero del cuadrilátero a bcb es igual a dos veces el área del triángulo abc pero la tenemos aquí dejar de ponerle un paréntesis entonces dos por esta expresión esta expresión es hace hace por bebé por bd de aquí hay una entre 12 a que hay un entre dos entonces esto es entre cual entre 40 gramos el paréntesis y ya nada más simplificamos verdad 12 34 nos quedan dos abajo y entonces estoy aquí es igual a hace por b de entre 2 muy bien entonces con esto demostramos que en un rombo podemos multiplicar las diagonales y dividir entre dos para obtener el área y eso está muy padre verdad bueno ya sabíamos que el rumor un paralelogramo y teníamos en otro video una fórmula para el área de los pares logramos que básicamente era base por altura pero ahora tenemos este que es un resultado pues también bonito por sí mismo que otra forma de obtener el área de un rombo es multiplicar sus diagonales y dividir eso entre dos