If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Factorizar expresiones cuadráticas: diferencia de cuadrados

Aprende a factorizar cuadráticas que tienen la forma "diferencia de cuadrados". Por ejemplo, escribe x²-16 como (x+4)(x-4).
Factorizar un polinomio involucra escribirlo como un producto de dos o más polinomios. Es lo opuesto al proceso de la multiplicación de polinomios.
En este artículo, aprenderemos a usar la diferencia de cuadrados para factorizar ciertos polinomios. Si no conoces la diferencia de cuadrados, por favor revisa nuestro video antes de seguir.

Introducción: patrón de diferencia de cuadrados

Cada polinomio que sea una diferencia de cuadrados se puede factorizar al aplicar la siguiente fórmula:
start color #11accd, a, end color #11accd, squared, minus, start color #1fab54, b, end color #1fab54, squared, equals, left parenthesis, start color #11accd, a, end color #11accd, plus, start color #1fab54, b, end color #1fab54, right parenthesis, left parenthesis, start color #11accd, a, end color #11accd, minus, start color #1fab54, b, end color #1fab54, right parenthesis
Observa que, en el patrón, a y b pueden ser una expresión algebraica. Por ejemplo, para a, equals, x y b, equals, 2, obtenemos lo siguiente:
x222=(x+2)(x2)\begin{aligned}\blueD{x}^2-\greenD{2}^2=(\blueD x+\greenD 2)(\blueD x-\greenD 2)\end{aligned}
El polinomio x, squared, minus, 4 ahora se expresa en forma factorizada, left parenthesis, x, plus, 2, right parenthesis, left parenthesis, x, minus, 2, right parenthesis. Podemos desarrollar el lado derecho de esta ecuación para justificar la factorización:
(x+2)(x2)=x(x2)+2(x2)=x22x+2x4=x24\begin{aligned}(x+2)(x-2)&=x(x-2)+2(x-2)\\\\&=x^2-2x+2x-4\\ \\ &=x^2-4\end{aligned}
Ahora que entendimos el patrón, usémoslo para factorizar más polinomios.

Ejemplo 1: factorizar x, squared, minus, 16

Tanto x, squared como 16 son cuadrados perfectos, ya que x, squared, equals, left parenthesis, start color #11accd, x, end color #11accd, right parenthesis, squared y 16, equals, left parenthesis, start color #1fab54, 4, end color #1fab54, right parenthesis, squared. En otras palabras:
x, squared, minus, 16, equals, left parenthesis, start color #11accd, x, end color #11accd, right parenthesis, squared, minus, left parenthesis, start color #1fab54, 4, end color #1fab54, right parenthesis, squared
Como los dos cuadrados se están restando, podemos ver que este polinomio representa una diferencia de cuadrados. Podemos usar el patrón de diferencia de cuadrados para factorizar esta expresión:
start color #11accd, a, end color #11accd, squared, minus, start color #1fab54, b, end color #1fab54, squared, equals, left parenthesis, start color #11accd, a, end color #11accd, plus, start color #1fab54, b, end color #1fab54, right parenthesis, left parenthesis, start color #11accd, a, end color #11accd, minus, start color #1fab54, b, end color #1fab54, right parenthesis
En nuestro caso, start color #11accd, a, end color #11accd, equals, start color #11accd, x, end color #11accd y start color #1fab54, b, end color #1fab54, equals, start color #1fab54, 4, end color #1fab54. Por lo tanto, nuestro polinomio se factoriza así:
left parenthesis, start color #11accd, x, end color #11accd, right parenthesis, squared, minus, left parenthesis, start color #1fab54, 4, end color #1fab54, right parenthesis, squared, equals, left parenthesis, start color #11accd, x, end color #11accd, plus, start color #1fab54, 4, end color #1fab54, right parenthesis, left parenthesis, start color #11accd, x, end color #11accd, minus, start color #1fab54, 4, end color #1fab54, right parenthesis
Podemos revisar nuestro trabajo al asegurar que el producto de estos dos factores es x, squared, minus, 16.

Comprueba tu comprensión

1) Factoriza x, squared, minus, 25.
Escoge 1 respuesta:

2) Factoriza x, squared, minus, 100.

Pregunta para reflexionar

3) ¿Podemos usar el patrón de diferencia de cuadrados para factorizar x, squared, plus, 25?
Escoge 1 respuesta:

Ejemplo 2: factorizar 4, x, squared, minus, 9

El coeficiente principal no tiene que ser igual a 1 para usar el patrón de la diferencia de cuadrados. ¡De hecho, el patrón de la diferencia de cuadrados se puede usar en este caso!
La razón es que 4, x, squared y 9 son cuadrados perfectos, pues 4, x, squared, equals, left parenthesis, start color #11accd, 2, x, end color #11accd, right parenthesis, squared y 9, equals, left parenthesis, start color #1fab54, 3, end color #1fab54, right parenthesis, squared. Podemos usar esta información para factorizar el polinomio usando el patrón de la diferencia de cuadrados:
4x29=(2x)2(3)2=(2x+3)(2x3)\begin{aligned}4x^2-9 &=(\blueD {2x})^2-(\greenD{3})^2\\ \\ &=(\blueD {2x}+\greenD 3)(\blueD {2x}-\greenD 3) \end{aligned}
Una comprobación con una multiplicación rápida verifica nuestra respuesta.

Comprueba tu comprensión

4) Factoriza 25, x, squared, minus, 4.
Escoge 1 respuesta:

5) Factoriza 64, x, squared, minus, 81.

6) Factoriza 36, x, squared, minus, 1.

Problemas de desafío

7*) Factoriza x, start superscript, 4, end superscript, minus, 9.

8*) Factoriza 4, x, squared, minus, 49, y, squared.

¿Quieres unirte a la conversación?

¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.