If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Vector word problem: resultant velocity

When an object, say, a boat, travels at a certain velocity, and the medium through which it travels, say, a river, has its own velocity, we can find the resultant velocity of the object by adding the two velocities. In this example, we find the resultant velocity vector of a boat. Creado por Sal Khan.

Transcripción del video

Nos dicen: Un bote viaja a una velocidad de  26kmh en una dirección que es una  rotación de 300 desde el este. En un momento determinado se encuentra con  una corriente a una velocidad de 15kmh en   una dirección que es una rotación  de 25° (grados desde) el este. Responde dos preguntas sobre la velocidad del  barco después de encontrarse con la corriente. Muy bien, la primera pregunta es:  ¿Cuál es la velocidad del barco después  de encontrarse con la corriente? Y nos dicen: Redondea tu respuesta   a la décima más cercana. Puedes redondear los  valores intermedios a la centésima más cercana. Y: ¿Cuál   es la dirección de la velocidad del barco  después de encontrarse con la corriente? Y también nos dicen algo ligeramente parecido: Redondea tu respuesta al entero  más cercano. Puedes redondear los   valores intermedios a la centésima más cercana. Así que, como siempre, pausa el video  e intenta resolverlo por tu cuenta. Muy bien, vamos a trabajar  juntos en este problema. Primero visualicemos cada uno de estos vectores. Tenemos este vector de 26 kilómetros por   hora (26kmh) en una dirección que es  una rotación de 300° desde el este. Y tenemos este otro vector de 15 kilómetros por   hora (15kmh) en una dirección que es  una rotación de 25° desde el este. Y vamos a dibujar algunos ejes por aquí, digamos  que este es mi eje Y, y este es mi eje X. Ahora, el primer vector tiene una dirección  que es una rotación de 300º desde el este. El   este es la dirección positiva del eje x. Así que  aquí tenemos 90º, 180º, 270º; recuerda, vamos en   sentido contrario a la manecillas del reloj porque  esta es la convención para un ángulo positivo. Y después continuaremos un poco más allá de los  270º, hasta acá, y su magnitud es de 26 km/h. Así que escribiremos 26 por acá. Después este otro vector, que es la  corriente, tiene una velocidad de   15 kilómetros por hora en una dirección  que es una rotación de 25 desde el este. Así que una rotación de 25 grados se va a ver algo  así [en la gráfica], y será un vector más corto,   de 15 km/h. Así que va a ser más  o menos así de largo. Obviamente,   sólo lo estoy aproximando y sólo  escribiré 15 para su magnitud. Y podemos visualizar cuál será la velocidad y  dirección del bote después de encontrarse con   la corriente. Será la suma de estos dos vectores. Y si queremos encontrar la  suma de estos dos vectores,   necesitaremos poner el punto de inicio de uno  de ellos en el punto final del otro vector. Así que vamos a desplazar  este vector azul hasta acá,   para que empiece en el  punto final del vector rojo. Y se va a ver algo así. Entonces nuestra velocidad   resultante después de encontrarse con  la corriente se va a ver algo así. Hemos visto esto en varios videos anteriores. Ahora, no solo queremos encontrar esto   de forma visual, además queremos  saber cuál es la velocidad real,   la cual será la magnitud de este  vector, y cuál es su dirección. Así que queremos saber cuál es el ángulo positivo,   ¿cuál es la rotación a partir del  lado positivo del eje x desde el este? Entonces, para hacer esto, lo que  vamos a hacer es representar cada   uno de nuestros vectores originales  en términos de sus componentes. Entonces, este vector de color rojo que  tenemos por aquí, y hemos hecho esto en   varias ocasiones explicando la intuición,  su componente X será su magnitud, que es 26,   por el coseno de su ángulo, por el coseno de 300º. Y su componente Y será 26 por el seno de 300º. Si esto no te resulta familiar, te invito  a que lo revises en otros videos en los que   presentamos por primera vez la noción de  las componentes de un vector. Estas vienen   directamente de la definición de las funciones  trigonométricas en el círculo unitario. De manera similar, para este vector azul,   su componente X será su magnitud  por el coseno de 25 grados. Y su componente Y será 15  por el seno de 25 grados. Una vez que expresamos los vectores de esta  forma, tendremos que, en el vector resultante,   que podemos llamar el vector resultante V, para  la velocidad resultante, sus componentes serán la   suma de cada una de las componentes originales. Así que podemos escribir por aquí que el vector   V será igual a la componente X del vector rojo,  de nuestro vector velocidad original, es decir,   26 coseno de 300 grados + la componente X de la  corriente, es decir 15 por el coseno de 25 grados. Mientras que su componente Y será… Y de nuevo,   sumaremos las correspondientes componentes Y:  26 seno de 300 grados + 15 seno de 25 grados. Y es momento de usar la calculadora para  encontrar a qué son iguales estas componentes,   o más bien a que son aproximadamente iguales. Entonces, primero calculemos la componente  X. Calculemos el coseno de 300 grados por 26,   más, y abriremos paréntesis, y tomaremos  el coseno de 25º, esto por 15, y cerramos   nuestro paréntesis. Y esto es igual a 26.59  si redondeamos al centésimo más cercano. Y ahora calculemos la componente Y. Primero calculamos el seno de 300 grados,   por 26, más, y abrimos paréntesis, calculamos  el seno de 25, por 15, y cerramos paréntesis. Esto es aproximadamente igual a –16.18 si  redondeamos a la centésima más cercana. Y asegurémonos de que esto tiene  sentido de una forma intuitiva. Bien, 26.59. Entonces iremos en esta dirección,   26.59 en dirección X, y por otra  parte iremos –16.18 en dirección Y. Así que en efecto, esto coincide con nuestra  intuición que encontramos de manera visual. Bien, ahora tenemos las componentes  X y Y de nuestro vector resultante,   pero esto no es lo que nos preguntan. Nos preguntan por la velocidad,   la cual será la magnitud de  este vector que tenemos aquí. Y así podemos escribir la magnitud de  ese vector, que va a ser su velocidad.  Bueno, usemos el teorema de Pitágoras  por aquí. Esto será la raíz cuadrada   de esta componente al cuadrado más esta otra  componente al cuadrado. Porque una vez más,   forman un triángulo rectángulo. Y hemos repasado esto en varios videos. Esto   será la raíz cuadrada de 26.59 al  cuadrado más –16.18 al cuadrado. Esto será aproximadamente igual a… y recuerda,  nos piden que se redondee al décimo más cercano,   26.59 al cuadrado más, y no importa este signo  negativo, ya que lo estamos elevando al cuadrado,   así que solo escribiremos 16.18 al cuadrado. Esto es igual a… Y a esto le calcularemos su raíz cuadrada. Así obtendremos 31 punto, y si queremos   redondear a la décima más cercana tendremos 31.1. Así que esto es aproximadamente igual 31.1 y vamos  a escribir las unidades, kilómetros por hora,   ya que hablamos de la velocidad del bote  después de encontrarse con la corriente. Ahora, la segunda pregunta es: ¿Cuál  es la dirección de la velocidad del   barco después de encontrarse con la corriente? Bueno, una forma de pensarlo es  que, si vemos este ángulo por aquí,   el cual nos dice la dirección y nos fijamos  en la tangente de theta, vamos a escribirlo,   la tangente de este ángulo theta, que sabemos  que es el cambio en Y entre el cambio en X,   podemos verlo como la pendiente  de este vector que tenemos aquí. Y nosotros ya sabemos cuáles son los cambios  en X o Y. Son nuestras componentes X y Y. Entonces será nuestro cambio en Y que es  –16.18 entre 26.59, que es nuestro cambio en X. Y para resolver para theta, podemos decir  que theta es igual a la tangente inversa…  Y espera, tenemos que pensar esto un segundo,  ya que esto no nos dará el valor exacto de theta   que necesitamos, ya que la función inversa de  theta nos da un ángulo entre 90 y –90 grados. Pero el ángulo que nosotros buscamos parece estar  entre 270 y 360 grados, ya que queremos pensarlo   como una rotación positiva en lugar de una  negativa, pero intentemos calcular esta expresión. La tangente inversa de –16.18 entre 26.59. Saquemos la calculadora y  dividiremos –16.18 entre 26.59 es  –0.608499… Y ahora calcularemos la tangente inversa  de esto, lo que nos da –31 grados.  Lo cual tiene sentido, de una manera intuitiva,  ya que si rotamos en el sentido de las agujas del   reloj, es decir si rotamos un ángulo negativo  desde la parte positiva del eje X positivo,   entonces parece que llegamos a esto que dibujamos,   sin embargo vamos a seguir la convención  e intentemos obtener un ángulo positivo. Lo que podemos hacer es sumarle a este ángulo 360º   para completar una rotación completa  y así obtener un ángulo equivalente. Así que sumemos 360º para obtener este resultado. Si redondeamos al entero más  cercano, obtendremos 329 grados. Así que theta es aproximadamente 329 grados. Entonces cuando decíamos que theta era  aproximadamente igual a esta expresión,   debimos escribir que theta es igual  a esta expresión más 360 grados. Ahora lo interesante es que añadimos 360  grados para llegar exactamente al mismo lugar. Si tuviéramos una situación en la que nuestro  ángulo fuera en realidad este ángulo de aquí,   no la situación actual, pero si imaginamos que  el ángulo estuviera en el segundo cuadrante,   entonces al obtener este ángulo theta  deberíamos poder darnos cuenta de que   estamos en el segundo cuadrante con un  ángulo que tiene la misma pendiente. Así que, en lugar de sumar 360 grados,   tendríamos que sumar 180 grados. Y  también hemos visto esto en otros videos.