If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Referencia de identidades trigonométricas

Busca Y comprende todas tus identidades trigonométricas favoritas

Identidades de recíprocos y cocientes

\sec, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction

\csc, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, sine, left parenthesis, theta, right parenthesis, end fraction

cotangent, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, tangent, left parenthesis, theta, right parenthesis, end fraction

tangent, left parenthesis, theta, right parenthesis, equals, start fraction, sine, left parenthesis, theta, right parenthesis, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction

cotangent, left parenthesis, theta, right parenthesis, equals, start fraction, cosine, left parenthesis, theta, right parenthesis, divided by, sine, left parenthesis, theta, right parenthesis, end fraction

Identidades pitagóricas

sine, squared, left parenthesis, theta, right parenthesis, plus, cosine, squared, left parenthesis, theta, right parenthesis, equals, 1, squared
tangent, squared, left parenthesis, theta, right parenthesis, plus, 1, squared, equals, \sec, squared, left parenthesis, theta, right parenthesis
cotangent, squared, left parenthesis, theta, right parenthesis, plus, 1, squared, equals, \csc, squared, left parenthesis, theta, right parenthesis

Identidades que provienen de sumas, diferencias, multiplos, y fracciones de ángulos

Estas están estrechamente relacionadas, pero examinemos cada clase.
Identidades de sumas y diferencias
sin(θ+ϕ)=sinθcosϕ+cosθsinϕsin(θϕ)=sinθcosϕcosθsinϕcos(θ+ϕ)=cosθcosϕsinθsinϕcos(θϕ)=cosθcosϕ+sinθsinϕ\begin{aligned} \sin(\theta+\phi)&=\sin\theta\cos\phi+\cos\theta\sin\phi\\\\ \sin(\theta-\phi)&=\sin\theta\cos\phi-\cos\theta\sin\phi\\\\ \cos(\theta+\phi)&=\cos\theta\cos\phi-\sin\theta\sin\phi\\\\ \cos(\theta-\phi)&=\cos\theta\cos\phi+\sin\theta\sin\phi \end{aligned}
tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕtan(θϕ)=tanθtanϕ1+tanθtanϕ\begin{aligned} \tan(\theta+\phi)&=\dfrac{\tan\theta+\tan\phi}{1-\tan\theta\tan\phi}\\\\ \tan(\theta-\phi)&=\dfrac{\tan\theta-\tan\phi}{1+\tan\theta\tan\phi} \end{aligned}
Identidades de ángulos dobles
sine, left parenthesis, 2, theta, right parenthesis, equals, 2, sine, theta, cosine, theta
cosine, left parenthesis, 2, theta, right parenthesis, equals, 2, cosine, squared, theta, minus, 1
tangent, left parenthesis, 2, theta, right parenthesis, equals, start fraction, 2, tangent, theta, divided by, 1, minus, tangent, squared, theta, end fraction
Identidades de medios ángulos
sinθ2=±1cosθ2cosθ2=±1+cosθ2tanθ2=±1cosθ1+cosθ=1cosθsinθ=sinθ1+cosθ\begin{aligned} \sin\dfrac\theta2&=\pm\sqrt{\dfrac{1-\cos\theta}{2}}\\\\ \cos\dfrac\theta2&=\pm\sqrt{\dfrac{1+\cos\theta}{2}}\\\\ \tan\dfrac{\theta}{2}&=\pm\sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}}\\ \\ &=\dfrac{1-\cos\theta}{\sin\theta}\\ \\ &=\dfrac{\sin\theta}{1+\cos\theta}\end{aligned}

Identidades de simetría y periodicidad

sine, left parenthesis, minus, theta, right parenthesis, equals, minus, sine, left parenthesis, theta, right parenthesis
cosine, left parenthesis, minus, theta, right parenthesis, equals, plus, cosine, left parenthesis, theta, right parenthesis
tangent, left parenthesis, minus, theta, right parenthesis, equals, minus, tangent, left parenthesis, theta, right parenthesis
sin(θ+2π)=sin(θ)cos(θ+2π)=cos(θ)tan(θ+π)=tan(θ)\begin{aligned} \sin(\theta+2\pi)&=\sin(\theta)\\\\ \cos(\theta+2\pi)&=\cos(\theta)\\\\ \tan(\theta+\pi)&=\tan(\theta) \end{aligned}

Identidades de cofunciones

sinθ=cos(π2θ)cosθ=sin(π2θ)tanθ=cot(π2θ)cotθ=tan(π2θ)secθ=csc(π2θ)cscθ=sec(π2θ)\begin{aligned} \sin\theta&= \cos\left(\dfrac{\pi}{2}-\theta\right)\\\\ \cos\theta&= \sin\left(\dfrac{\pi}{2}-\theta\right)\\\\ \tan\theta&= \cot\left(\dfrac{\pi}{2}-\theta\right)\\\\ \cot\theta&= \tan\left(\dfrac{\pi}{2}-\theta\right)\\\\ \sec\theta&= \csc\left(\dfrac{\pi}{2}-\theta\right)\\\\ \csc\theta&= \sec\left(\dfrac{\pi}{2}-\theta\right) \end{aligned}

Apéndice: todas las razones trigonoméricas en el círculo unitario

Utiliza el punto movible para ver cómo cambian las longitudes de las razones de acuerdo al ángulo.

¿Quieres unirte a la conversación?

¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.