Si estás viendo este mensaje, significa que estamos teniendo problemas para cargar materiales externos en nuestro sitio.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Contenido principal

Repaso de trigonometría en el círculo unitario

Repasa la definición de funciones trigonométricas en el círculo unitario.

¿Qué es la definición de las funciones trigonométricas en el círculo unitario?

La definición en el círculo unitario nos permite extender el dominio de seno y coseno a todos los números reales. El proceso para determinar el seno o coseno para cualquier ángulo θ es como sigue:
  1. Empezando en (1,0), nos movemos a lo largo del círculo en sentido contrario a las manecillas del reloj hasta que el ángulo que se forma entre tu posición, el origen y el eje x positivo sea igual a θ.
  2. sin(θ) es igual a la coordenada y de tu punto, y cos(θ) es igual a la coordenada x.
Las demás funciones trigonométricas pueden evaluarse a partir des su relación con seno y coseno.
¿Quieres saber más sobre la definición en el círculo unitario? Mira este video.

Apéndice: todas las razones trigonoméricas en el círculo unitario

Utiliza el punto movible para ver cómo cambian las longitudes de las razones de acuerdo al ángulo.

Comprueba tu comprensión

Problema 1
sin(50)=
  • Tu respuesta debe ser
  • un entero, como 6
  • una fracción propia simplificada, como 3/5
  • una fracción impropia simplificada, como 7/4
  • un número mixto, como 1 3/4
  • un decimal exacto, como 0.75
  • un múltiplo de pi, como 12 pi o 2/3 pi

¿Quieres unirte a la conversación?

¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.