If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Reacción en cadena de la polimerasa (PCR)

Una técnica utilizada para amplificar, o hacer muchas copias de, una región de ADN blanco en específico.

Puntos más importantes:

  • La reacción en cadena de la polimerasa, o PCR, es una técnica para hacer muchas copias de una determinada región de ADN in vitro (en un tubo de ensayo en lugar de un organismo).
  • La PCR depende de una ADN polimerasa termoestable, la Taq polimerasa, y requiere de cebadores de ADN diseñados específicamente para la región de ADN de interés.
  • En la PCR, la reacción se somete repetidamente a un ciclo de cambios de temperatura que permiten la producción de muchas copias de la región blanco.
  • La PCR tiene muchas aplicaciones en la investigación y en la práctica. Se utiliza de forma rutinaria en la clonación de ADN, el diagnóstico médico y el análisis forense de ADN.

¿Qué es la PCR?

La reacción en cadena de la polimerasa (PCR) es una técnica de laboratorio común utilizada para hacer muchas copias (¡millones o miles de millones!) de una región particular de ADN. Esta región de ADN puede ser cualquier cosa que le interese al experimentador. Por ejemplo, podría ser un gen cuya función quiere entender un investigador o un marcador genético usado por científicos forenses para relacionar el ADN de la escena del crimen con los sospechosos.
Por lo general, el objetivo de la PCR es producir suficiente ADN de la región blanco para que pueda analizarse o usarse de alguna otra manera. Por ejemplo, el ADN amplificado por PCR se puede secuenciar, visualizar por electroforesis en gel o clonar en un plásmido para otros experimentos.
La PCR se utiliza en muchas áreas de la biología y la medicina, como la investigación en biología molecular, el diagnóstico médico e incluso algunas ramas de la ecología.

La Taq polimerasa

Al igual que la replicación de ADN en un organismo, la PCR requiere de una enzima ADN polimerasa que produzca nuevas cadenas de ADN mediante el uso de las cadenas existentes como molde. La ADN polimerasa que normalmente se utiliza en la PCR se llama Taq polimerasa, por la bacteria tolerante al calor de la que se aisló (Thermus aquaticus).
T. aquaticus vive en aguas termales y fuentes hidrotermales. Su ADN polimerasa es muy termoestable y su mayor actividad se presenta cerca de los 70, °, start text, C, end text (temperatura a la que la ADN polimerasa de ser humano o de E. coli no funcionaría). La Taq polimerasa es ideal para la PCR gracias a esta estabilidad térmica. Como veremos, la PCR utiliza altas temperaturas repetidamente para desnaturalizar el molde de ADN o separar sus cadenas.

Cebadores para PCR

Al igual que otras ADN polimerasas, la Taq polimerasa solo puede hacer ADN si hay un cebador, una corta secuencia de nucleótidos que proporciona un punto de partida para la síntesis de ADN. En una reacción de PCR, la región de ADN que será copiada, o amplificada, se determina por los cebadores que el o la investigadora elija.
Los cebadores para PCR son pedazos cortos de ADN de cadena sencilla, generalmente de unos 20 nucleótidos de longitud. En cada reacción de PCR se utilizan dos cebadores que están diseñados para flanquear la región blanco (la región que debe ser copiada). Es decir, les agregan secuencias que harán que se unan a cadenas opuestas del molde de ADN solo en los extremos de la región a copiar. Los cebadores se unen al molde mediante complementariedad de bases.
ADN molde:
5' TATCAGATCCATGGAGT...GAGTACTAGTCCTATGAGT 3' 3' ATAGTCTAGGTACCTCA...CTCATGATCAGGATACTCA 5'
Cebador 1: 5' CAGATCCATGG 3' Cebador 2:
Cuando los cebadores se unen al molde, la polimerasa los extiende y la región que se encuentra entre ellos se copia.

Los pasos de la PCR

Los ingredientes clave para una reacción de PCR son Taq polimerasa, cebadores, ADN molde y nucleótidos (los bloques básicos del ADN). Los ingredientes se colocan en un tubo, junto con los cofactores que necesite la enzima, y se someten a ciclos repetidos de calentamiento y enfriamiento que permiten la síntesis del ADN.
Los pasos básicos son:
  1. Desnaturalización (96, °, start text, C, end text): la reacción se calienta bastante para separar, o desnaturalizar, las cadenas de ADN. Esto proporciona los moldes de cadena sencilla para el siguiente paso.
  2. Templado (55
    65°, start text, C, end text): la reacción se enfría para que los cebadores puedan unirse a sus secuencias complementarias en el molde de ADN de cadena sencilla.
  3. Extensión (72, °, start text, C, end text): la temperatura de la reacción se eleva para que la Taq polimerasa extienda los cebadores y sintetice así nuevas cadenas de ADN.
Este ciclo se repite 25
35 veces en una reacción de PCR típica, que generalmente tarda 2
4 horas, según la longitud de la región de ADN que se copia. Si la reacción es eficiente (funciona bien), puede producir miles de millones de copias a partir de una o unas cuantas copias de la región blanco.
Eso es porque no solo se usa el ADN original como molde en cada ciclo. En realidad, el nuevo ADN que se produce en una ronda puede servir como molde en la siguiente ronda de síntesis de ADN. Hay muchas copias de los cebadores y muchas moléculas de Taq polimerasa flotando en la reacción, por lo que el número de moléculas de ADN casi puede duplicarse en cada ciclo. La siguiente imagen muestra este patrón de crecimiento exponencial.

Uso de la electroforesis en gel para visualizar los resultados de una PCR

Habitualmente, los resultados de una reacción de PCR se visualizan (se hacen visibles) al usar electroforesis en gel. La electroforesis en gel es una técnica en la que una corriente eléctrica impulsa fragmentos de ADN a través de una matriz de gel y los fragmentos de ADN se separan según su tamaño. Típicamente se incluye un estándar, o marcador de peso molecular, para que pueda determinarse el tamaño de los fragmentos en la muestra de PCR.
Los fragmentos de ADN de la misma longitud forman una "banda" en el gel que se puede identificar a simple vista si el gel se tiñe con un pigmento que se una al ADN. Por ejemplo, una reacción de PCR que produce un fragmento de 400 pares de bases (pb) se vería así en un gel:
Carril izquierdo: marcador de ADN con bandas de 100, 200, 300, 400 y 500 pb.
Carril derecho: resultado de la reacción de PCR, una banda de 400 pb.
Una banda de ADN contiene muchas, muchas copias de la región blanco de ADN, no solo una o unas cuantas copias. Dado que el ADN es microscópico, deben existir muchas copias de este para poder verlo a simple vista. Esto es una parte importante de por qué la PCR es una herramienta importante: produce suficientes copias de una secuencia de ADN para poder ver o manipular esa región de ADN.

Aplicaciones de la PCR

Mediante el uso de la PCR, una secuencia de ADN se puede amplificar millones o miles de millones de veces y producirá suficientes copias de ADN para que se analicen mediante otras técnicas. Por ejemplo, el ADN se puede visualizar por electroforesis en gel, enviar a secuenciar o digerir con enzimas de restricción y clonar en un plásmido.
La PCR se utiliza en muchos laboratorios de investigación, y también tiene aplicaciones prácticas en medicina forense, pruebas genéticas y diagnósticas. Por ejemplo, la PCR se utiliza para amplificar genes asociados con trastornos genéticos a partir del ADN de los pacientes (o de ADN fetal, en el caso de pruebas prenatales). La PCR también puede utilizarse para detectar el ADN de una bacteria o un virus en el cuerpo de un paciente: si el patógeno está presente, es posible amplificar regiones de su ADN de una muestra de sangre o tejido.

Problema de ejemplo: la PCR en ciencias forenses

Imagina que trabajas en un laboratorio forense. Acabas de recibir una muestra de ADN de un cabello encontrado en la escena de un crimen junto con muestras de ADN de tres posibles sospechosos. Tu trabajo es examinar un marcador genético determinado y ver si alguno de los tres sospechosos coincide con el ADN del cabello para este marcador.
El marcador se presenta en dos alelos o versiones. Uno contiene una secuencia repetida una vez (región marrón en la siguiente imagen) y el otro contiene la secuencia repetida dos veces. En una reacción de PCR con cebadores que flanquean la región con las secuencias repetidas, el primer alelo produce un fragmento de ADN de 200 start text, p, b, end text y el segundo produce un fragmento de 300 start text, p, b, end text:
Alelo marcador 1: los cebadores que flanquean la región de secuencias repetidas amplifican un fragmento de 200 pb de ADN.
Alelo marcador 2: los cebadores flanquean la región de repetidas amplifican un fragmento de 300 pb de ADN
Realizas PCR para las cuatro muestras de ADN y visualizas los resultados por electroforesis en gel, como se muestra a continuación:
El gel tiene cinco carriles:
Primer carril: marcador de ADN con bandas de 100, 200, 300, 400 y 500 pb.
Segundo carril: ADN de la escena del crimen, banda de 200 pb.
Tercer carril: ADN del sospechoso #1, banda de 300 pb.
Cuarto carril: ADN del sospechoso #2, bandas de 200 y 300 pb.
Quinto carril: ADN del sospechoso #3, banda de 200 pb.
¿Cuál es el sospechoso cuyo ADN coincide con el de la escena del crimen para este marcador?
Escoge 1 respuesta:
Escoge 1 respuesta:

Más sobre PCR y análisis forense

En pruebas forenses reales de ADN para una escena del crimen, los técnicos harían un análisis conceptualmente similar al del ejemplo anterior. Sin embargo, se compararía un número de diversos marcadores (no solo un marcador como en el ejemplo) entre el ADN de la escena del crimen y el ADN de los sospechosos.
Además, los marcadores utilizados en un análisis forense típico no tienen solo dos formas diferentes. Por el contrario, son altamente polimórficos (poli = muchos, morfo = forma). Es decir, se presentan en muchos alelos que varían en pequeños incrementos de longitud.
El tipo de marcador más usado en el análisis forense, llamado repeticiones cortas en tándem (STR, por sus siglas en inglés), consiste en muchas copias repetidas de la misma secuencia corta de nucleótidos (de 2 a 5 nucleótidos de largo, por lo general). Un alelo de un STR puede tener 20 repeticiones, mientras que otro podría tener 18 y otro solo 10start superscript, 1, end superscript.
Al examinar múltiples marcadores, cada uno de los cuales presenta muchas formas alélicas, los científicos forenses pueden construir una "huella dactilar" genética única a partir de una muestra de ADN. En un análisis típico de STR que utiliza 13 marcadores, la probabilidad de un falso positivo (que dos personas tengan la misma "huella dactilar" de ADN) ¡es menor a 1 en 10 start text, m, i, l, space, m, i, l, l, o, n, e, s, end textstart superscript, 1, end superscript!
Aunque se pueda pensar que las pruebas de ADN se usan para condenar a los criminales, también han jugado un papel crucial en exonerar personas falsamente acusadas (incluso algunas que tenían muchos años encarceladas). El análisis forense también se usa para determinar paternidad y para identificar restos humanos en escenas de desastre.

¿Quieres unirte a la conversación?

  • Avatar blobby green style para el usuario fran fran
    Me gustaría saber con qué programa se han hecho las ilustraciones que acompañan este temario, ya que me parecen muy adecuadas para explicar de manera sencilla y me gustaría hacer las mías propias. Gracias.
    (11 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar marcimus purple style para el usuario Génesis Aguilera
    y cuando hablamos de PCR en tiempo real? ¿Cuál es la diferencia??
    (4 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario sara Ibeth Hernandez
    El análisis forense también se usa para determinar paternidad y para identificar restos humanos en escenas de desastre.
    (2 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario Ruben Chamorro
    Buenos dias una pregunta en el caso de utilizar el pcr para el virus htlv se realiza el mismo procedimiento o tiene algo que ver que utilicen el proceso de transcripción inversa. Por favor ayudenme con esa pregunta .
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario Rocio Constantino
    ¿Por qué no es necesaria una helicasa para la PCR?
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario carlos figueroa
    quisiera saber que pasa si por un error se cambia la secuencia de un cebador en un nucleotido, como afecta esto al PCR
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
    • Avatar blobby green style para el usuario brayan_artigas07
      Si la secuencia del cebador o primer ya sea el sentido o el antisentido se cambia puede que no se mantenga la unión a la hebra de DNA que quieres amplificar, por lo tanto no se daría la elongación por que el cebador se separaría en el alineamiento, o el cebador puede que se coloque en otro lugar del genoma que tú desconoces y amplificarías un fragmento que no estas buscando.
      (1 voto)
  • Avatar blobby green style para el usuario ekamini_97
    Quisiera saber como he de diseñar cebadores para amplificar un DNA circular. Quiero amplificar todo el DNA circular y no solo una parte específica. Pensé en colocar el cebador sentido sobre una región determinada de mi secuencia de interés (que además lleva una mutación) y el cebador antisentido colocarlo corriente arriba, es decir, en posición anterior al cebador sentido. Si yo quiero que se me amplifique todo el DNA, estos cebadores han de solaparse una parte para asegurarme tal cosa?¿, y otro cosa, este solapamiento no afectaría a la PCR?¿
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario Fran H
    ¿Cuál es la influencia del PCR en la farmacología?
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario yeiramathey
    Como puedo utilizar la tecnica de PCR EN TIEMPO REAL para la enfermedad enrollamiento de la hoja de papa.
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar blobby green style para el usuario cristopher  alava
    ¿algunos ejemplos de primer/cebadores y su utilidad, explicación qué región genética amplifican y con qué propósito?
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.