If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Física - Preparación Educación Superior

Repaso de movimiento circular uniforme y aceleración centrípeta

Repasa los conceptos clave, ecuaciones y habilidades para entender el movimiento circular uniforme, incluida la aceleración centrípeta y la diferencia entre velocidad lineal y angular.

Términos clave

Término (símbolo)Significado
Movimiento circular uniformeMovimiento en círculo a rapidez constante.
RadiánLa razón de la longitud de un arco a su radio. Existen 2, pi radianes en un círculo de 360, degree o una revolución. Adimensional.
Velocidad angular (omega) Medida de cómo un ángulo cambia con el tiempo. El análogo rotacional de la velocidad lineal. Cantidad vectorial en la que el sentido contrario a las manecillas del reloj se define como la dirección positiva. En el Si tiene unidades de start fraction, start text, r, a, d, i, a, n, e, s, end text, divided by, start text, s, end text, end fraction.
Aceleración centrípeta (a, start subscript, c, end subscript)La aceleración apunta hacia el centro de una trayectoria curva y es perpendicular a la velocidad del objeto. Hace que un objeto cambie su dirección y no su rapidez a lo largo de una trayectoria circular. También se llama aceleración radial. En el SI tiene unidades de start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction.
Periodo (T)Tiempo necesario para una revolución. Inversamente proporcional a la frecuencia. En el SI tiene unidades de start text, s, end text.
Frecuencia (f) Número de revoluciones por segundo para un objeto giratorio. En e SI sus unidades son start fraction, 1, divided by, start text, s, end text, end fraction o start text, H, e, r, t, z, space, left parenthesis, H, z, right parenthesis, end text.

Ecuaciones

EcuaciónSignificado de los símbolosSignificado en palabras
delta, theta, equals, start fraction, delta, s, divided by, r, end fractiondelta, theta es el ángulo de rotación, delta, s es la distancia recorrida alrededor de un círculo y r es el radio.El cambio en el ángulo (en radianes) es la razón entre la distancia recorrida alrededor del círculo y el radio del círculo.
omega, with, \bar, on top, equals, start fraction, delta, theta, divided by, delta, t, end fractionomega, with, \bar, on top es la velocidad angular promedio, delta, theta es el ángulo de rotación y delta, t es el cambio en el tiempo.La velocidad angular promedio es proporcional al desplazamiento angular e inversamente proporcional al tiempo.
v, equals, r, omegav es la velocidad lineal, r es el radio y omega es la velocidad angular.La velocidad lineal es proporcional a la velocidad angular multiplicada por el radio r.
T, equals, start fraction, 2, pi, divided by, omega, end fraction, equals, start fraction, 1, divided by, f, end fractionT es el periodo, omega es la velocidad angular y f es la frecuencia.El periodo es inversamente proporcional a la velocidad angular multiplicado por un factor de 2, pi e inversamente proporcional a la frecuencia.

Cómo relacionar la velocidad angular y la velocidad lineal

La velocidad angular omega mide la cantidad de rotación por unidad de tiempo. Es un vector y tiene una dirección que corresponde al movimiento en sentido contrario a las manecillas del reloj o en sentido de las manecillas del reloj (Figura 1).
La misma letra omega suele utilizarse para representar la rapidez angular, que es la magnitud de la velocidad angular.
La velocidad v mide la cantidad de desplazamiento por unidad de tiempo. Es un vector y tiene una dirección (Figura 1).
La misma letra v suele utilizarse para representar la rapidez (a veces llamada rapidez lineal en estos contextos para diferenciarla de la rapidez angular), que es la magnitud de la velocidad.
La relación entre la rapidez v y la rapidez angular omega está dada por la relación v, equals, r, omega.
Figura 1. Velocidad angular contra velocidad lineal

La rapidez angular no cambia con el radio

La rapidez angular omega no cambia con el radio, pero la rapidez lineal v sí. Por ejemplo, en una línea de una banda de marcha que va dando una vuelta, la persona en el exterior tiene que dar los pasos más largos para mantenerse en línea con todos los demás. Por lo tanto, la persona que está hasta afuera y que recorre una mayor distancia por unidad de tiempo, tiene una mayor rapidez lineal que la persona más cerca del interior. Sin embargo, la rapidez angular de cada persona en la línea es la misma, porque se mueven a través del mismo ángulo en la misma cantidad de tiempo (Figura 2).
Figura 2. La rapidez angular sigue siendo la misma independientemente de la distancia desde el centro, pero la rapidez lineal aumenta proporcionalmente con el radio. Imagen adaptada de Wikimedia Commons. Imagen original de Wikimedia Commons, CC BY-SA 4.0

Aprende más

Para comprobar tu comprensión y trabajar hacia el dominio de estos conceptos, revisa nuestro ejercicio de calcular velocidad angular, periodo y frecuencia.

¿Quieres unirte a la conversación?

  • Avatar blobby green style para el usuario liliana rios
    en el movimiento circular uniforme, la velocidad angular w, permanece constante?
    (2 votos)
    Avatar Default Khan Academy avatar para el usuario
  • Avatar starky tree style para el usuario Maria Mayorga
    por que se mueve en la misma direccion
    (1 voto)
    Avatar Default Khan Academy avatar para el usuario
¿Sabes inglés? Haz clic aquí para ver más discusiones en el sitio en inglés de Khan Academy.