If you're seeing this message, it means we're having trouble loading external resources on our website.

Si estás detrás de un filtro de páginas web, por favor asegúrate de que los dominios *.kastatic.org y *.kasandbox.org estén desbloqueados.

Contenido principal

Geometry: Similarity, Right Triangles, and Trigonometry

619 preguntas32 habilidades


66 preguntas4 habilidades
Verify experimentally the properties of dilations given by a center and a scale factor:


24 preguntas1 habilidad
A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.


30 preguntas2 habilidades
The dilation of a line segment is longer or shorter in the ratio given by the scale factor.


26 preguntas2 habilidades
Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
 Pronto habrá nuevas habilidades para este estándar.


15 preguntas1 habilidad
Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.


30 preguntas2 habilidades
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.


16 preguntas1 habilidad
Explain and use the relationship between the sine and cosine of complementary angles.
Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
 Pronto habrá nuevas habilidades para este estándar.


74 preguntas3 habilidades
Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles.